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Ambiguity in language

@ natural language ambiguous - problem in automated
processing
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Ambiguity in language

@ natural language ambiguous - problem in automated
processing
@ ambiguity on more levels - lexical, syntactic, semantic

@ one lexeme can have more than one meaning
e polysemy - word or phrase with multiple related meanings
e homonymy - group of words that share the same spelling (or
pronunciation)
@ borders between homonymy and polysemy are often unclear
and change over time

SENSEVAL - inter-annotator agreement only around 60%
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Natural language processing and WSD

@ use of word sense disambiguation (WSD) in NLP
information retrieval
automated indexing
machine translation
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Natural language processing and WSD

@ use of word sense disambiguation (WSD) in NLP
e information retrieval
e automated indexing
e machine translation
o ...
@ two major approaches in NLP
e deterministic approach - rule-based
e stochastic approach - based on probability
@ stochastic approach

e supervised methods - training a model on annotated data set
e unsupervised methods - clustering on unannotated data set
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Preparing the data

@ corpus: Vjesnik daily newspaper, on-line edition
@ consists of:

e 187 323 articles
e 82 826 497 words
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Preparing the data

@ corpus: Vjesnik daily newspaper, on-line edition
@ consists of:

e 187 323 articles
e 82 826 497 words

@ two separate lists: “mig" (“mouse” — the first list) and
“stanica” (“cell” — the second list)

@ randomly divided into ten sets - used for 10-fold
cross-validation

@ corpus verticalised, sentence boundaries marked
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Manual annotation

e manualy determining word sense (“mi¥" - 8, “stanica” - 6)
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Manual annotation

e manualy determining word sense (“mi¥" - 8, “stanica” - 6)

@ manual annotation of 1000 occurences for each lexeme
60% by both annotators, the rest separatley

@ due to strong polysemy -inter-annotator agreement was 100%
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Naive Bayes classifier

@ simple probabilistic learning algorithm

Bakari¢, Njavro, Ljubesi¢ What makes sense?



Naive Bayes classifier

@ simple probabilistic learning algorithm

@ calculates the a priori and the a posteriori conditional
probability of an event in the training corpus, decision by
MAP (maximum a posteriori) rule

P
k(x1,x2,..xp) = argmax P(Y = y) H p(Xp =xp|Y =)
y pi
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Naive Bayes classifier

@ simple probabilistic learning algorithm

@ calculates the a priori and the a posteriori conditional
probability of an event in the training corpus, decision by
MAP (maximum a posteriori) rule

T

k(x1,x2, .. Xp)—argmaxP (Y=y H Xp =xp|Y =)

@ no feature selection — all types are features
o disadvantage: assumes variables are independent events

@ advantage: not affected by the curse of dimensionality,
produces good results without feature selection
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Naive Bayes classifier

@ simple probabilistic learning algorithm

@ calculates the a priori and the a posteriori conditional
probability of an event in the training corpus, decision by
MAP (maximum a posteriori) rule

T

k(x1,x2, .. Xp)—argmaxP (Y=y H Xp =xp|Y =)

@ no feature selection — all types are features

o disadvantage: assumes variables are independent events

@ advantage: not affected by the curse of dimensionality,
produces good results without feature selection

@ we do not observe the absoulute accuracy, but the relative
shift in regards to the environment size
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@ goal: determine the effect of lexeme's sorroundings on its
meaning
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@ goal: determine the effect of lexeme's sorroundings on its
meaning
@ we observed the following in regards of accuracy:
e changing window size - including 1-50 words left and right
e changing window distance - including 1 word left and right
while changing distance
e evaluating the accuracy of one-sense-per-discourse method
e evaluating impact of sentence border on determining lexeme's
sense
@ evaluation by accuracy and standard error through 10-fold
cross-validation
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Window size/accuracy for “mi¥"
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accuracy +- standard error

0.70 0.75 0.80

0.65

Window size/accuracy for “stanica”
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Window distance/accuracy for “mig”

accuracy +- standard error
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accuracy +- standard error

0.55 0.65 0.75

0.45

Window distance/accuracy for “stanica”
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window distance

Bakari¢, Njavro, Ljubesi¢ What makes sense?



One-sense-per-discourse method

Applicability | Accuracy
“mig” 28.92% | 88.98%
“stanica” 26.31% | 97.10%
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Accuracy with standard error in relation to 3 tokens
before/after observed lexeme sentence boundary

Before sentence boundary | After sentence boundary
“mig” 68,00%+1,52% 64,14%+2,09%
“stanica” 57,37%+1,75% 57,27%+1,18%
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Conclusion

@ strong predictors in window size 1-5
e both window size and window distance experiments confirm
the immediate sorrounding of the lexeme as the most
informative when determining strong WSD predictors
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e both window size and window distance experiments confirm
the immediate sorrounding of the lexeme as the most
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@ good results when applying one-sense-per-discourse method
e when the observed lexeme appears more than once in a

discourse, the probability is very high that it will have the same
sense
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Conclusion

@ strong predictors in window size 1-5

e both window size and window distance experiments confirm
the immediate sorrounding of the lexeme as the most
informative when determining strong WSD predictors

@ good results when applying one-sense-per-discourse method

e when the observed lexeme appears more than once in a
discourse, the probability is very high that it will have the same
sense

@ sentence border does not appear to be significant for strong
WSD predictors
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contact:
nbakaric@ffzg.hr
jnjavro@ffzg.hr
nljubesi©ffzg.hr

Questions?
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