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Ambiguity in language

natural language ambiguous - problem in automated
processing

ambiguity on more levels - lexical, syntactic, semantic

one lexeme can have more than one meaning

polysemy - word or phrase with multiple related meanings
homonymy - group of words that share the same spelling (or
pronunciation)

borders between homonymy and polysemy are often unclear
and change over time

SENSEVAL - inter-annotator agreement only around 60%
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Natural language processing and WSD

use of word sense disambiguation (WSD) in NLP

information retrieval
automated indexing
machine translation
...

two major approaches in NLP

deterministic approach - rule-based
stochastic approach - based on probability

stochastic approach

supervised methods - training a model on annotated data set
unsupervised methods - clustering on unannotated data set
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Preparing the data

corpus: Vjesnik daily newspaper, on-line edition

consists of:

187 323 articles
82 826 497 words

two separate lists: “mǐs” (“mouse” – the first list) and
“stanica” (“cell” – the second list)

randomly divided into ten sets - used for 10-fold
cross-validation

corpus verticalised, sentence boundaries marked
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Manual annotation

manualy determining word sense (“mǐs” - 8, “stanica” - 6)

manual annotation of 1000 occurences for each lexeme
60% by both annotators, the rest separatley

due to strong polysemy -inter-annotator agreement was 100%
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Näıve Bayes classifier

simple probabilistic learning algorithm

calculates the a priori and the a posteriori conditional
probability of an event in the training corpus, decision by
MAP (maximum a posteriori) rule

k(x1, x2, ...xP) = argmax
y

P(Y = y)
P∏

p=1

p(Xp = xp|Y = y)

no feature selection – all types are features

disadvantage: assumes variables are independent events

advantage: not affected by the curse of dimensionality,
produces good results without feature selection

we do not observe the absoulute accuracy, but the relative
shift in regards to the environment size
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Experiment

goal: determine the effect of lexeme’s sorroundings on its
meaning

we observed the following in regards of accuracy:

changing window size - including 1-50 words left and right
changing window distance - including 1 word left and right
while changing distance
evaluating the accuracy of one-sense-per-discourse method
evaluating impact of sentence border on determining lexeme’s
sense

evaluation by accuracy and standard error through 10-fold
cross-validation

accuracy =
a + d

a + b + c + d

SE =
σ√
N
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Results

Window size/accuracy for “mǐs”
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Results

Window size/accuracy for “stanica”
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Results

Window distance/accuracy for “mǐs”
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Results

Window distance/accuracy for “stanica”
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Results

One-sense-per-discourse method

Applicability Accuracy

“mǐs” 28.92% 88.98%

“stanica” 26.31% 97.10%
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Results

Accuracy with standard error in relation to 3 tokens
before/after observed lexeme sentence boundary

Before sentence boundary After sentence boundary

“mǐs” 68,00%±1,52% 64,14%±2,09%

“stanica” 57,37%±1,75% 57,27%±1,18%
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Conclusion

strong predictors in window size 1-5

both window size and window distance experiments confirm
the immediate sorrounding of the lexeme as the most
informative when determining strong WSD predictors

good results when applying one-sense-per-discourse method

when the observed lexeme appears more than once in a
discourse, the probability is very high that it will have the same
sense

sentence border does not appear to be significant for strong
WSD predictors
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Questions

contact:

nbakaric@ffzg.hr
jnjavro@ffzg.hr
nljubesi@ffzg.hr

Questions?
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